
NETLAM: An Automated LLM Framework to
Generate and Evaluate Stealthy Hardware

Trojans

Tishya Sarma Sarkar1 , Kislay Arya2 , Siddhartha Chowdhury1 ,
Upasana Mandal1 , Shubhi Shukla3 , Sarani Bhattacharya1 , and

Debdeep Mukhopadhyay1

1 Department of Computer Science and Engineering,
Indian Institute of Technology, Kharagpur

2 Department of Electronics and Electrical Communication Engineering,
Indian Institute of Technology, Kharagpur

3 Centre for Computational and Data Sciences,
Indian Institute of Technology, Kharagpur

{tishya, kislayarya536}@kgpian.iitkgp.ac.in,
siddhartha.chowdhury92@gmail.com,

{mandal.up98, shubhishukla}@kgpian.iitkgp.ac.in,
{sarani, debdeep} @cse.iitkgp.ac.in

Abstract. Securing externally sourced hardware designs is essential to
prevent adversaries from embedding hardware Trojans. Trojans are stealthy
modifications that leak data or create backdoors. Existing benchmarks
like Trust-Hub provide only a limited set of Trojans (106), while the pos-
sibilities are virtually infinite. To address this, we propose NETLAM,
a comprehensive framework utilizing multiple LLM-based tools to gener-
ate previously undiscovered Trojans not included in Trust-Hub. The first
tool converts hardware netlists into Directed Acyclic Graphs (DAGs) to
identify vulnerable nets and components in digital designs. Using these
insights, the second tool generates stealthy Trojan-infected versions of
the original design. To evaluate the stealthiness of these Trojans, we use
an LLM-based equivalence checker, where stealthier Trojans pass equiv-
alence checks while others are detected. We evaluate NETLAM using
the AES dataset from Trust-Hub consisting of 28 Trojans. We identi-
fied 5 new Trojans, with high Common Vulnerability Scoring System
(CVSS) scores, demonstrating their stealthiness. To prove the efficacy
of the NETLAM generated Trojans, we further utilize an open-source
formal equivalence checker to perform a functional equivalence check be-
tween the golden and the NETLAM generated Trojan-infected circuits.
All of the suggested Trojans pass the formal equivalence check. However,
the same Trojan-infested circuits fail in the NETLAM equivalence test,
thus validating the effectiveness of our proposed framework. We show
that LLMs and Generative AI models, such as GPT-4o and Gemini, can
enhance Trojan detection by using semantic and probabilistic analysis
rather than strict logical equivalence4.

4 GitHub Repository:
https://github.com/shubhishukla10/NETLAM

https://orcid.org/0009-0000-1834-1303
https://orcid.org/0009-0000-2305-5424
https://orcid.org/0009-0006-2588-0210
https://orcid.org/0009-0006-0106-3638
https://orcid.org/0000-0003-0452-885X
https://orcid.org/0000-0002-4190-2671
https://orcid.org/0000-0002-6499-8346
https://github.com/shubhishukla10/NETLAM

2 T. S. Sarkar et al.

Keywords: Hardware Trojans, Large Language Models, Vulnerability
Detector, Equivalence Checker, Directed Acyclic Graphs

1 Introduction

In today’s technology-driven world, hardware devices are everywhere, supporting
important applications in communication, healthcare, defense, transportation,
and consumer electronics. These devices are the foundation of modern infras-
tructure, making their security and reliability very important. However, the fast
growth of hardware components and their dependence on complex global sup-
ply chains have created new risks. One of the most serious threats is hardware
Trojans, which are hidden and dangerous modifications that can harm the func-
tionality and trustworthiness of these devices.

Hardware Trojans (HTs) are harmful changes intentionally added to digital
designs to disrupt their normal behaviour, steal sensitive information, or disable
important functions at the right moment. These changes can take different forms,
such as adding extra logic gates, altering connections, or creating small timing
changes [15]. Trojans are usually made to stay hidden during normal use and
testing, only becoming active under specific conditions, which makes them very
hard to detect. The effects of these attacks can be severe: in defense systems,
they can threaten national security, while in consumer devices, they can cause
serious privacy leaks and financial losses. Consequently, identifying, mitigating,
and minimizing these risks has emerged as a crucial research focus.

Existing research in HTs largely focuses on either insertion or detection,
often addressing them in isolation. For instance, [1] utilizes large language mod-
els (LLMs) to autonomously generate synthesizable HTs from high-level design
specifications, enabling rapid exploration of the attack surface. Similarly, [4]
applies machine learning techniques to dynamically insert Trojans by analyz-
ing structural and functional features of existing designs. Expanding on these
efforts, [10] demonstrates the application of LLMs in offensive hardware secu-
rity, showcasing their ability to identify vulnerable modules, insert HTs, and
craft sophisticated attacks on complex designs like RISC-V CPUs. The study
addresses LLM context-length limitations by focusing on register transfer level
(RTL) code, validating the inserted HTs through FPGA-based testing on CPU
integrity and availability. On the detection front, [3] introduces SPICED, an
LLM-based framework for detecting and localizing analog Trojans and syntacti-
cal bugs in circuit netlists. By leveraging chain-of-thought reasoning and few-shot
learning, SPICED achieves 93.32% average Trojan coverage and 93.4% true pos-
itive rate on analog benchmarks without requiring hardware modifications or
explicit training, providing an effective software-based solution for analog and
mixed-signal circuits. Furthermore, [19] presents a golden reference-free HT de-
tection method using Graph Neural Networks (GNNs). Representing hardware
designs as Data Flow Graphs (DFGs), this approach achieves 97% recall for
RTL in 21.1ms and 84% recall for gate-level netlists in 13.42s, demonstrating
scalability and efficacy. Additionally, [18] proposes a golden-free multidimen-

NETLAM 3

sional self-referencing technique, which detects hardware Trojans by analyzing
side-channel signatures in time and frequency domains, expanding Trojan cov-
erage and reducing process variations. The automated framework includes test
generation, signal processing, and decision-making, achieving high detection sen-
sitivity. Evaluated on 96 Trojan-inserted chips, it effectively detects even small,
hard-to-detect Trojans. Although these advancements have improved detection
techniques, pre-silicon verification continues to face challenges due to security
gaps. Such security gaps encompass incomplete threat models, limited detection
of hardware Trojans, insufficient formal verification procedures, inadequate test
input sets during simulation for rare events, and most importantly, hidden vul-
nerabilities in the RTL designs. To address this, a formal verification approach [5]
has been introduced, enabling exhaustive detection of sequential HTs at the RTL
level, independent of golden models or payload behavior, effectively identifying
complex HTs in Trust-Hub accelerators. Apart from these, Vul-FSM [12] intro-
duces a database of 10, 000 vulnerable finite state machine (FSM) designs, gen-
erated using the SecRT-LLM framework. Leveraging LLMs like GPT-3.5-turbo,
the framework achieves high accuracy in vulnerability insertion and detection,
showcasing its potential for efficiently creating and analyzing hardware security
benchmarks. Despite significant advancements, current research lacks a compre-
hensive tool capable of identifying all potential Trojans that could be inserted
into a given design. While existing repositories like Trust-Hub [13], [14] provide
only a handful of Trojan examples, and tools like Vul-FSM [12] focus on FSM
vulnerabilities, they represent just a fraction of the infinite possibilities. This
limitation highlights the need for an automated and versatile solution to system-
atically discover, analyze, and generate new, previously unknown Trojans across
diverse hardware designs, motivating us to develop such a tool.

In this work, we introduce NETLAM, a comprehensive framework leverag-
ing multiple LLM-based tools, developed by us, with distinct functionalities to
identify, generate, and evaluate Trojans within a given design. First, we develop
an LLM-based equivalence checker and demonstrate its effectiveness using Tro-
jan examples from Trust-Hub. Next, we create an LLM-based tool to convert
digital netlists or Verilog code into directed acyclic graphs (DAGs), enabling the
identification of potential Trojan insertion points. This step is crucial because
it gives a direct insight into the vulnerable and candidate trigger points of the
hardware design under test. Thus, it allows the designer to secure the design to
avoid possible threats. Finally, we design an LLM-based Trojan injector capable
of generating Verilog code with injected Trojans. Together, these tools form the
NETLAM framework, which takes a design as input, identifies vulnerabilities
by analyzing DAGs generated from the netlist, produces Trojan-injected Verilog
code based on these vulnerabilities, and evaluates the stealthiness of the Trojans
using the equivalence checker. We specifically evaluated our tool on the AES de-
sign from Trust-Hub, which includes 28 reported Trojans. Our tool successfully
identified and generated 5 new Trojans that were not part of Trust-Hub, with
high CVSS scores. For ranking the effectiveness of the NETLAM generated
Trojans, we further test their equivalence with the golden designs using a formal

4 T. S. Sarkar et al.

equivalence checker, EQY, which is included in the Yosys synthesis suite [9], [17].
EQY is an open-source automated tool that performs a logical and functional
equivalence between two given designs by exploiting miter circuits. As a result,
a formal functional uniformity is examined. Nonetheless, there are innumerable
instances of Trojans, which surreptitiously hide within the design and get acti-
vated by rare inputs or triggers. In such cases, a functional equivalence might
not always provide an intended result and can render a Trojan-infected design
equivalent to the golden design due to its sporadic nature. At this point, our
LLM-based equivalence checker can come to the rescue by building a graph-
based representation of the circuit and detecting redundant or suspicious logic
paths. Our LLM-based equivalence checker also provides a semantic analysis of
the two designs under test, thus detecting any additional circuitry or variable
introduced in the victim modules. This step allows us to claim that our proposed
tool, NETLAM succinctly generates and evaluates powerful Trojans.

1.1 Contributions:

The contributions of this work are as follows:

– LLM-Based Equivalence Checker: We develop an LLM-based equiva-
lence checker capable of verifying the functional equivalence between designs
and identifying Trojan injections. Its effectiveness is demonstrated through
evaluation on Trust-Hub Trojan examples.

– LLM-Based DAG Generator and Vulnerability Identifier: We pro-
pose a tool that converts hardware netlists or Verilog code into directed
acyclic graphs (DAGs) and identifies the most stealthy Trojan-vulnerable
points within the design, highlighting potential insertion locations.

– LLM-Based Trojan Injector: We introduce an LLM-based Trojan in-
jector that generates Verilog code with stealthily inserted Trojans, creating
novel Trojan-infected designs.

– Comprehensive Framework - NETLAM: We consolidate the above
tools into NETLAM, a unified framework that takes a design as input,
identifies vulnerabilities via DAG generation, generates Trojan-injected Ver-
ilog code from identified vulnerabilities, and evaluates the stealthiness of the
generated Trojans using the equivalence checker.

The rest of the paper is organized as follows. Section 2 provides essential
background on HTs, LLMs, and equivalence checking, while reviewing existing
methods in HT detection and insertion. Section 3 describes the NETLAM
framework, including its three key components: the LLM-based DAG genera-
tor for identifying vulnerabilities, the Trojan injector for creating stealthy HTs,
and the equivalence checker for validating stealthiness. Section 4 details the ex-
perimental setup and evaluates NETLAM on AES designs from Trust-Hub,
showcasing its ability to generate novel Trojans with high CVSS scores. Finally,
Section 5 concludes the paper, summarizing its contributions and emphasizing
the need for an integrated framework to advance HT research.

NETLAM 5

2 Background

2.1 Large Language Models (LLMs)

Large Language Models (LLMs) such as GPT, LLaMa, and Gemini are based on
the transformer architecture, which leverages the attention mechanism to com-
pute dynamic relevance scores for input tokens. This enables the model to focus
on semantically significant parts of the input. The self-attention module, a core
component, computes contextual dependencies across the entire input sequence
in parallel, overcoming the sequential limitations of RNNs [11] and LSTMs [7].
Additionally, positional encodings are employed to encode token order, com-
pensating for the model’s inherent lack of sequential processing capability. In
this work, we utilize multiple LLMs to develop our tool NETLAM, which can
generate stealthy and robust trojans injected benchmarks.

2.2 Hardware Trojans

Hardware Trojans (HTs) [16] threaten the security of integrated circuits, espe-
cially in third-party design and manufacturing. These stealthy modifications can
compromise system confidentiality, integrity, and availability, often lying dor-
mant until triggered. Detection techniques like side-channel analysis, runtime
monitoring, and formal verification, alongside advanced methods using machine
learning and Hardware Performance Counters (HPCs), help identify anomalies.
Prevention strategies include split manufacturing, logic locking, and post-silicon
power and delay analysis. As hardware underpins critical systems like smart
grids, IoT, and autonomous vehicles, robust defenses against HTs are vital for
ensuring security and reliability

2.3 Register Transfer Level (RTL) and Gate-Level Netlists

In digital design, netlists serve as textual descriptions of circuits, detailing their
components and interconnections. These representations exist at varying levels
of abstraction, with the most common being the Register-Transfer Level (RTL)
and gate-level. RTL netlists depict a design at a high level of abstraction, focus-
ing on the flow of data and control signals between registers. Written in hardware
description languages (HDLs) such as Verilog or VHDL, RTL netlists emphasize
functionality over implementation specifics. They describe algorithmic behav-
ior using constructs like conditional statements, loops, and procedural blocks,
enabling designers to focus on the logic and operation of the circuit.

Gate-level netlists, on the other hand, offer a detailed view of the circuit after
synthesis. These netlists consist of interconnected logic gates, flip-flops, and hard-
ware primitives, representing the actual implementation of the design based on
a specific technology library. Gate-level netlists are essential for detailed analysis
tasks such as timing verification, power estimation, and functional equivalence
checking. Bridging the abstraction gap between RTL and gate-level netlists is a
critical aspect of hardware verification. Ensuring that the synthesized gate-level

6 T. S. Sarkar et al.

netlist faithfully implements the intended behavior of the RTL design is key to
detecting functional errors and identifying potential hardware Trojans.

Vulnerability
identifier LLM

Digital Design DAG Vulnerable points

Trojan injector
LLM

List of Hardware
TrojansTrojan Inserted

Code

Equivalence check
LLM

NO

YES

1 2 3

4

567

7

8

8

Fig. 1. Workflow of the Proposed NETLAM Framework. The three LLM modules,
labeled as Vulnerability Identifier LLM, Trojan Injector LLM, and Equivalence Check
LLM, are three separate LLM instantiations. The DAG generated by the Vulnerability
Identifier is an adjacency list representation of the complex netlist. The vulnerable
points include the probable trigger nets in the design. The Trojan inserted code is a
maliciously modified version of the target Verilog module.

3 NETLAM Framework

We propose an automated framework, NETLAM, that integrates three pow-
erful LLM-based tools: a DAG generator and vulnerability identifier, a Trojan
injector, and an equivalence checker. Together, these tools systematically identify
vulnerabilities, generate stealthy hardware Trojans, and evaluate their impact,
providing a comprehensive solution for uncovering new Trojans and enhancing
existing benchmarks like Trust-Hub, which is currently limited to 106 Trojan
examples. NETLAM aims to create a significantly larger set of Trojans while
ensuring their stealthiness through advanced equivalence evaluation. Simultane-
ously, our methodology aims to assist a designer to assess the susceptibility of the
RTL design under test to probable threats by exploring the vulnerable nets and
unknown hardware Trojans that can be implanted in those points. This method-
ology is compatible with two state-of-the-art LLM models, Gemini-1.5-flash00

NETLAM 7

and ChatGPT-4, to enable robust and automated hardware security analysis.
The workflow for NETLAM is illustrated in Figure 1, wherein the input is
an RTL design or a gate-level netlist and the output is a set of undiscovered
hardware Trojans that pass the equivalence check.

The following are two synthesized gate-level netlists. You are tasked with the fol-
lowing:

1. DAG Conversion and Analysis: Give a small description of the circuit, what
it does and what are the components involved. Convert the Verilog code to a Di-
rected Acyclic Graph (DAG) to map all signals, registers, and logic blocks. Provide
the DAG in a clear adjacency list format for readability and the nodes in the DAG
must be -

a. input and output ports and registers
b. wires
c. input and output ports of the components.

2. Identify Vulnerable Points: Detect vulnerable locations (e.g., specific regis-
ters, data paths, logic gates) in the first netlist that could be exploited for hard-
ware Trojans utilizing the DAG. Evaluate vulnerabilities based on placement, sig-
nal flow, and sensitivity to conditions. For each vulnerable point, recommend the
most stealthy Trojan types that should pass any functional equivalence check with
the original design, including: Trigger mechanisms (e.g., specific input sequences,
clock cycles) Payload actions (e.g., bit-flipping, signal tampering) Stealth features
(e.g., random activation, intermittent triggering) Rank the top 5 Trojans with de-
scriptions that align with the vulnerabilities identified. Print the DAG as an ad-
jacency list. List the top 5 Trojans with targeted vulnerable points in the design.
Rank the Trojans using the CVSS framework, evaluating its stealth, impact, and
exploitability.

1. Instruction for Vulnerability Identification and DAG Creation

3.1 Vulnerability Identifier and DAG Generator

The first tool in NETLAM systematically identifies vulnerabilities in Verilog
codes, RTL, and gate-level netlists. It converts the design into a DAG repre-
sentation, revealing the logical flow of operations and structural dependencies.
We provide specific preliminary instructions to the LLM which broadly include
(i) Understanding the functionality of each module of the provided design, (ii)
Constructing a DAG specific to each module in the form of an adjacency matrix,
(iii) Identifying all the vulnerable points or modules from the DAG where critical
Trojans can be inserted. A snippet of the predefined instruction is provided in
the listing 1. Instruction for Vulnerability Identification and DAG Cre-
ation. We provide complete instructions in the GitHub repository. The DAG
serves as a blueprint for identifying exploitable points in the design. The LLM
evaluates the DAG using a context-aware analysis, considering critical factors
such as timing, data dependencies, and logic sensitivity. This analysis identifies

8 T. S. Sarkar et al.

the top five most stealthy Trojan-vulnerable points, which may include specific
registers, signals, or logic blocks. These points represent locations where Tro-
jans can be inserted with minimal functional disturbance, providing a detailed
vulnerability map to guide the Trojan injection phase.

The following are the Verilog codes of an AES block cipher design. You are tasked
with the following:

1. Identify the ‘S‘ module in the provided Verilog files.
2. Implement a Gate-Level Trojan only in the ‘S‘ module which gets triggered

by specific input combinations.
- Do not modify any other modules.
- Ensure there are no apparent hints of the Trojan inclusion.
- Make the Trojan as stealthy as possible.

3. Modify the original Verilog code by inserting the newly suggested Trojan
into the identified vulnerable points. Ensure that the modified code integrates
seamlessly into the design without introducing apparent anomalies. Test the new
Trojan-injected design for operational correctness while ensuring the Trojan re-
mains functional. After creating the new Trojan, rank it using the CVSS frame-
work, evaluating its stealth, impact, and exploitability. Provide a justified CVSS
score and a comparison with the original Trojan to highlight improvements in
stealth and effectiveness.

4. Provide the entire modified Verilog code with well-labeled comments where
the Trojan is included.

2. Instruction for Trojan Generation

3.2 Trojan Injector and Trojan Generation

The second tool focuses on generating Trojan-injected versions of the original
design based on the vulnerabilities identified in the DAG analysis. We provide
specific preliminary instructions to the LLM to build this tool which broadly
include (i) Identifying the top 5 stealthy Trojans that can be inserted in the
specific vulnerable modules, (ii) Ranking the suggested Trojans based on their
CVSS scores, and (iii) Modifying the existing module and generating the Trojan-
infected module. A snippet of the detailed instruction is provided in the listing
2. Instruction for Trojan Generation. We provide complete instructions
in the GitHub repository. This Trojan injector creates modified Verilog code,
embedding stealthy hardware Trojans that exploit the identified vulnerabilities
while ensuring operational correctness. The tool classifies the generated Trojans
into categories, such as key-dependent, payload-triggered, or side-channel-based,
and evaluates their potential impact on the design’s behavior and security. To
enhance stealth, techniques such as delayed activation or seamless integration
into legitimate components are employed. The Trojan injector generates a range
of Trojans, from simple to highly stealthy, broadening the scope of Trojan pos-
sibilities for hardware designs.

NETLAM 9

The following are two synthesized gate-level representations of two Verilog designs.
You are tasked with the following:

1. Construct a miter circuit to check the functional equivalence of the two pro-
vided gate-level netlists. Provide a detailed analysis of their functional behavior
and determine if they are equivalent at the RTL-level, despite having varying top
modules or additional sub-modules. Focus on input-output behavior and logical
equivalence, ignoring optimizations or naming differences or gate implementations
or additional Verilog modules. Is there any additional circuitry or malicious alter-
ation in any of the two files?

2. If a Trojan is detected in either netlist, analyze its characteristics and im-
pact on the design. Start by identifying the Trojan type, such as key-dependent,
payload-triggered, or side-channel-based, through structural and behavioral analy-
sis of the netlist. Next, assess how the Trojan affects the overall design, focusing on
vulnerabilities introduced, disruptions caused to timing or functionality, and poten-
tial security implications. Provide a thorough explanation of the Trojan’s behavior
and its operational consequences.

3. Based on the equivalence check outcome, determine whether the Trojan
passes or fails the check. If the Trojan remains undetected during functional equiv-
alence testing, evaluate its stealth and impact using the Common Vulnerability
Scoring System (CVSS). Rank the Trojan and justify its score with detailed ob-
servations. If the Trojan is easily detected during equivalence testing, proceed to
create a more stealthy alternative. Identify vulnerable points or modules in the de-
sign, such as unused registers, infrequent logic, or weak constraints, and propose a
new Trojan designed to blend into the original structure using techniques like de-
layed activation, payload encryption, or integration into legitimate components.

3. Instruction for Equivalence Check

3.3 Equivalence Checker and Stealth Assessment

The procedure of building the third tool, an equivalence checker, involves con-
verting a complex digital design into gate-level netlists using Yosys [17], an
open-source Verilog RTL synthesis tool, to synthesize Verilog files for functional
equivalence analysis. The golden reference and Trojan-infected Verilog source
codes are sourced from the AES-based Trojan attack variants provided in Trust-
Hub [13], [14]. Each Verilog file undergoes a sequence of transformations in Yosys,
including reading the design, mapping it to standard cells using a provided lib-
erty file, optimizing the design, and generating mapped netlists.

We use the freePDK45 45 nm [8] variant open-source Process Design Kit
(PDK) to map the synthesized Verilog designs into the gate-level netlists. These
netlists are then fed into a Generative AI model as part of a carefully constructed
and pre-defined prompt, requesting an analysis to determine their functional
equivalence based on logical behavior and structural characteristics. This ap-
proach avoids the need to upload files to external services by directly embedding
the netlist content into the prompt, thereby streamlining the process. The AI’s
response provides a comprehensive comparison and insight into the equivalence
or differences between the two Verilog designs.

10 T. S. Sarkar et al.

In scenarios where a Verilog designer needs to verify whether an outsourced
design has been tampered with or contains malicious alterations, the equivalence
checker proves invaluable. The designer inputs the golden reference design along-
side the manufactured IC design into the checker, which analyzes the two netlists
for additional logic blocks, structural modifications, or any alterations that could
pose security threats. The equivalence checker operates based on pre-defined in-
structions to detect such malicious changes, without any prior knowledge of
the presence, absence, or potential types of Trojans, or which netlist is Trojan-
infected in the provided designs. We provide detailed preliminary instructions
to the LLM to build our tool, which broadly includes (i) Performing a rigor-
ous functional equivalence checking of the two gate-level netlists, ignoring any
additional modules or input/output variables. (ii) Justifying whether the modi-
fied module passes or fails the checking procedure, (iii) If any Trojan is detected,
then rank the same using CVSS score and provide a more stealthy Trojan, which
should have a higher CVSS score than the provided one. A snippet of the de-
tailed instruction is provided in the listing 3. Instruction for Equivalence
Check. We provide complete instruction in the GitHub repository. Importantly,
the checker requires gate-level netlists for accurate analysis, as Verilog source
codes often include procedural blocks that are challenging to model effectively.

If the equivalence checker identifies any such malicious alterations in either
of the netlists in comparison to the other, it proceeds to determine the type of
Trojan that has been inserted in the victim netlist. The stealth of the Trojan is
decided based on a hypothetical Common Vulnerability Scoring System (CVSS)
score. The CVSS score quantifies the severity of security vulnerabilities. It con-
siders factors like exploitability and impact to assign a numerical rating between
0 and 10, where 0 indicates no severity and 10 indicates critical severity. This
process also enables the designer to assess the impact of the inserted Trojan and
identify vulnerable points within the design. The equivalence checker’s output is
further leveraged by the NETLAM tool to pinpoint vulnerabilities and explore
the possibility of inserting alternative Trojans with higher CVSS scores into the
same design. To further validate the credibility of our tool and the stealth of the
generated Trojans, we evaluate the equivalence between the golden design and
the Trojan-infected design using the formal equivalence checker (EQY) included
within the Yosys suite [9]. This is a miter circuit-based equivalence checker,
which strategically checks the functional equivalence between two designs by
comparing the outputs of the two designs. If the outputs vary then there is a
potential modification in either of the designs.

We now evaluate this comprehensive framework in the next section by un-
covering new stealthy Trojans that were previously unknown.

4 Experimental results

In this section, we discuss the comprehensive results of our proposed tools. We
specifically target the AES-based Trojan attacks included in Trust-Hub for ana-
lyzing the security-critical aspect of our proposed tool. The authors propose an

NETLAM 11

Table 1. Comparison of NETLAM with state-of-the-art tools for hardware Trojan
generation.

F
ea

tu
re

N
E
T

L
A

M
[1

]
[1

2]
[2

]
[4

]
[3

]

A
p
p
ro

ac
h

U
se

s
L
L
M

s
fo

r
vu

ln
er

ab
ili

ty
id

en
ti

fic
at

io
n,

T
ro

ja
n

in
se

rt
io

n,
an

d
eq

ui
va

le
nc

e
ch

ec
ki

ng

U
se

s
L
L
M

s
to

an
al

yz
e

an
d

ge
ne

ra
te

T
ro

ja
ns

ba
se

d
on

T
ru

st
-H

ub
be

nc
hm

ar
ks

U
se

s
L
L
M

s
fo

r
vu

ln
er

ab
ili

ty
in

se
rt

io
n,

de
te

ct
io

n,
an

d
va

lid
at

io
n

us
in

g
fid

el
it
y

ch
ec

ks

A
ut

om
at

ed
fr

am
ew

or
k

fo
r

ge
ne

ra
ti

ng
an

d
be

nc
hm

ar
ki

ng
T
ro

ja
ns

on
P

C
B

de
si

gn
s

M
L
-b

as
ed

T
ro

ja
n

de
te

ct
io

n
us

in
g

tr
ig

ge
r-

ne
t

cl
as

si
fic

at
io

n

U
se

s
L
L
M

s
to

de
te

ct
an

d
lo

ca
liz

e
st

ea
lt

hy
T
ro

ja
ns

in
ci

rc
ui

t
ne

tl
is

ts
us

in
g

ch
ai

n-
of

-t
ho

ug
ht

re
as

on
in

g

E
qu

iv
al

en
ce

C
h
ec

ki
n
g

L
L
M

-b
as

ed
eq

ui
va

le
nc

e
ch

ec
ke

r
w

it
h

fu
nc

ti
on

al
an

al
ys

is
N

ot
m

en
ti

on
ed

H
yb

ri
d

ve
ri

fic
at

io
n

ap
pr

oa
ch

co
m

bi
ni

ng
st

at
ic

an
al

ys
is

,
fo

rm
al

ve
ri

fic
at

io
n,

an
d

m
an

ua
lr

ev
ie

w

N
ot

a
pr

im
ar

y
fo

cu
s

N
ot

m
en

ti
on

ed
N

ot
ap

pl
ic

ab
le

(f
oc

us
ed

on
an

al
og

ci
rc

ui
t

an
al

ys
is

)

V
u
ln

er
ab

il
it
y

A
n
al

ys
is

Id
en

ti
fie

s
an

d
ra

nk
s

vu
ln

er
ab

le
po

in
ts

in
R
T

L
/n

et
lis

ts
us

in
g

D
A

G
re

pr
es

en
ta

ti
on

C
an

no
t

id
en

ti
fy

vu
ln

er
ab

le
po

in
ts

in
th

e
de

si
gn

U
se

s
L
L
M

s
fo

r
vu

ln
er

ab
ili

ty
de

te
ct

io
n,

ca
te

go
ri

za
ti

on
,

an
d

va
lid

at
io

n

A
na

ly
ze

s
tr

ig
ge

r
an

d
pa

yl
oa

d
se

le
ct

io
n

fo
r

bo
ar

d-
le

ve
lT

ro
ja

ns

U
se

s
M

L
m

od
el

s
to

cl
as

si
fy

tr
ig

ge
r

ne
ts

ba
se

d
on

pr
ob

ab
ili

ty
es

ti
m

at
es

C
an

no
t

id
en

ti
fy

vu
ln

er
ab

le
po

in
ts

in
th

e
de

si
gn

T
ri

gg
er

N
et

S
el

ec
ti

on
Id

en
ti

fie
s

st
ea

lt
hy

ne
ts

us
in

g
D

A
G

-b
as

ed
vu

ln
er

ab
ili

ty
m

ap
pi

ng

U
se

r
pr

om
pt

-b
as

ed
tr

ig
ge

r
ne

t
se

le
ct

io
n

U
se

s
gu

id
ed

pr
om

pt
in

g
fo

r
vu

ln
er

ab
ili

ty
se

le
ct

io
n

U
se

s
si

gn
al

pr
ob

ab
ili

ty
an

al
ys

is
fo

r
ra

re
no

de
de

te
ct

io
n

U
se

s
M

L
-b

as
ed

cl
as

si
fic

at
io

n
to

pr
ed

ic
t

hi
gh

-p
ro

ba
bi

lit
y

tr
ig

ge
r

ne
ts

E
xt

ra
ct

s
tr

ig
ge

r
lo

ca
ti

on
s

ba
se

d
on

L
L
M

pr
om

pt
s

L
ea

rn
in

g
T

im
e

U
se

s
pr

e-
tr

ai
ne

d
L
L
M

s,
re

du
ci

ng
tr

ai
ni

ng
ov

er
he

ad

U
se

s
pr

e-
tr

ai
ne

d
L
L
M

s,
re

du
ci

ng
tr

ai
ni

ng
ov

er
he

ad

U
se

s
G

P
T

m
od

el
s

w
it

h
it

er
at

iv
e

re
fin

em
en

t
to

im
pr

ov
e

ac
cu

ra
cy

N
o

ex
pl

ic
it

le
ar

ni
ng

;
re

lie
s

on
au

to
m

at
io

n
he

ur
is

ti
cs

R
eq

ui
re

s
tr

ai
ni

ng
ti

m
e

fo
r

M
L

m
od

el
s

U
se

s
pr

e-
tr

ai
ne

d
L
L
M

s,
re

du
ci

ng
tr

ai
ni

ng
ov

er
he

ad

S
ca

la
b
il
it
y

C
an

be
ex

te
nd

ed
to

an
y

R
T

L
de

si
gn

s

P
la

tf
or

m
-in

de
pe

nd
en

t
bu

t
fo

cu
se

d
on

F
P

G
A

/
A

SI
C

de
si

gn
s

E
va

lu
at

es
10

,0
00

F
SM

-b
as

ed
de

si
gn

s
fo

r
se

cu
ri

ty
w

ea
kn

es
se

s

B
en

ch
m

ar
ks

m
ul

ti
pl

e
P

C
B

de
si

gn
s

w
it

h
di

ffe
re

nt
T
ro

ja
n

in
st

an
ce

s

Sc
al

es
w

el
lw

it
h

M
L

tr
ai

ni
ng

bu
t

re
qu

ir
es

da
ta

se
t

av
ai

la
bi

lit
y

A
na

lo
g/

m
ix

ed
si

gn
al

ci
rc

ui
ts

on
ly

A
u
to

m
at

io
n

L
ev

el
Fu

lly
au

to
m

at
ed

Fu
lly

au
to

m
at

ed
Se

m
i-a

ut
om

at
ed

,
re

qu
ir

in
g

m
an

ua
l

va
lid

at
io

n
in

so
m

e
ca

se
s

Fu
lly

au
to

m
at

ed
Se

m
i-a

ut
om

at
ed

Fu
lly

au
to

m
at

ed

In
te

gr
at

io
n

w
it

h
E
D

A
T
oo

ls
U

se
s

Y
os

ys
fo

r
ne

tl
is

t
pr

oc
es

si
ng

an
d

fo
rm

al
ve

ri
fic

at
io

n

W
or

ks
w

it
h

F
P

G
A

to
ol

s
(X

ili
nx

V
iv

ad
o)

In
te

gr
at

es
Ja

sp
er

G
ol

d
Su

pe
rl

in
t

an
d

A
R

C
-F

SM
fo

r
ve

ri
fic

at
io

n

P
ri

m
ar

ily
us

es
a

cu
st

om
T
ro

ja
n

in
se

rt
io

n
to

ol

In
te

gr
at

es
w

it
h

Sy
no

ps
ys

an
d

C
ad

en
ce

A
T

P
G

to
ol

s
fo

r
T
ro

ja
n

va
lid

at
io

n

N
o

in
te

gr
at

io
n

w
it

h
tr

ad
it

io
na

lE
D

A
to

ol
s

12 T. S. Sarkar et al.

LLM-based framework capable of generating stealthy Trojans in [1]. However,
they do not assess the vulnerabilities of the victim RTL designs. On the other
hand, [3] proposes a tool that identifies stealthy analog Trojans, but does not
insert them. Moreover, this work does not explore the vulnerabilities in a digital
design. The authors of [12] propose a comprehensive benchmark dataset based
on finite state machines (FSMs) and proposes a semi-automated tool to evaluate
10,000 FSM-based designs. However, this work uses guided prompting for vul-
nerability selection. As our tool comprehensively discovers the probable trigger
nets/payloads in the design from the generated DAGs, it provides a better un-
derstanding of the design. Specifically, a designer can also use the vulnerability
detector before manufacturing to discover any design shortcomings. A detailed
state-of-the-art survey is provided in Table 1. During equivalence checking, our
tool has effectively detected several highly stealthy Trojans from the benchmark
dataset provided by Trust-Hub, which are otherwise challenging to identify dur-
ing the standard operation of an AES encryption process. The Trojan-infected
designs comprise additional modules that make the detection of Trojans easier.
Moreover, the synthesized netlists of the same comprise additional circuitry as
compared to the original design, further altering the structural uniformity. Few of
the state-of-the-art Trojans such as the side-channel-based or payload-triggered
Trojans do not alter the normal functionality, thus making detection difficult.

Table 2. Comprehensive Results of Equivalence Checking

Sl.
No.

AES
Variant

Equivalence
Check (EQY)

Equivalence
Check (NETLAM)

Trojan
Provided

CVSS
Score

1 T100 Fail Fail Side-channel,
key-dependent 7.5

2 T1000 Fail Fail Payload-triggered 7.8
3 T1100 Fail Pass Side-channel-based 8
4 T1200 Fail Fail Side-channel-based 7.5
5 T1300 Pass Fail Data-dependent 9
6 T200 Fail Fail Data-dependent 8.5
7 T300 Pass Pass Side-channel-based 9.6

8 T900 Fail Pass
Payload-triggered,

key-dependent,
side-channel Trojan

9.8

9 T1500 Pass Pass Side-channel-based 9.8
10 T700 Fail Fail Payload-triggered 7.8

Among the 28 instances of AES-based Trojan attacks, Table 2 showcases 10
of the most powerful Trojan-infected AES designs. We carry out the equiva-
lence in two methods: preliminarily, we utilize the formal equivalence checker of
Yosys, EQY, to find the functional equivalence between the golden design and
the Trojan-infested designs. This gives us a comprehensive idea of the functional
and logical similarities/dissimilarities. Finally, we check the equivalence by ex-

NETLAM 13

ploiting our LLM-based equivalence checker. This allows us to further extend the
investigation if the Trojan is not visible by EQY. Out of the 10 variants, 7 fails
the functional equivalence check using EQY, while the remaining 3 passes due
to their high level of stealth. Although most of the Trojans are very difficult to
trace, a considerable number of the Trojans are identifiable by our LLM-based
equivalence checker. NETLAM equivalence checker can successfully detect 6
Trojans. The Trojans of the attack variants that pass the equivalence test are
mainly side-channel-based, data or key-dependent and payload-triggered Tro-
jans.

A direct comparison of File 1 and File 2 reveals significant differences. While both
files implement an AES-128 encryption algorithm with similar sub-modules (S, S4,
T, expand_key_128, final_round, one_round, table_lookup), File 2 contains an
additional module: ‘TSC’ and ‘Trojan_Trigger’. File 1’s ‘top’ module only includes
an AES-128 instance, while File 2’s ‘top’ module includes the AES-128 instance, a
‘Trojan_Trigger’ module, and a ‘TSC’ module. The ‘TSC’ module acts as a Tro-
jan. It takes the key and data as input and, when triggered by ‘Tj_Trig’, produces
an output (‘Capacitance‘) that is derived from the input data and XORed with
portions of the key. This output is not part of the legitimate AES-128 functional-
ity. The Trojan_Trigger module generates the trigger signal ‘Tj_Trig’ based on a
large counter, making its activation seemingly random and hard to predict during
normal operation. The counter’s logic seems convoluted and designed to make it
difficult to analyze at a glance. Therefore, the two netlists are not functionally
equivalent. File 2 includes additional circuitry in the form of a Trojan that leaks
information.

4. Functional Equivalence Check

Side-channel-based Trojans are difficult to detect through functional equiv-
alence since they do not alter the primary operation of the circuit. Data or
Key-dependent Trojans, on the other hand, remain dormant for extended peri-
ods, becoming active only when the target key or data pattern appears, making
them extremely hard to detect during standard testing. Payload-triggered Tro-
jans are triggered only when the rare signal pattern occurs. The corresponding
CVSS scores of the undetected Trojans are considerably high, with the side-
channel-based Trojans being the most critical ones. The outputs of the equiv-
alence checker, provided in the listings 4. Functional Equivalence Check
and 5. Trojan Detection and Stealth Evaluation portray the structural
as well as functional discrepancies among the Trojan-free and Trojan-infected
designs of the AES-T1200 variant. Additionally, the listing 5. Trojan Detec-
tion and Stealth Evaluation presents the strength of the particular Trojan.
Furthermore, our proposed NETLAM tool performs an overview of the differ-
ent sub-modules present in the design, describing the functionality of each of
them to better understand the vulnerable sites where Trojans can be inserted.
Such an output is provided in the listing 6. NETLAM output for Circuit
Description.

14 T. S. Sarkar et al.

The Trojan fails the simple functional equivalence check because of the added
modules and outputs. However, detecting it requires a more sophisticated side-
channel analysis method rather than a simple input-output comparison.
To evaluate the stealth of the original Trojan, we can use the CVSS framework. A
possible CVSSv3 score for the original Trojan could be:
Attack Vector (AV): Local (L) – Assuming the attacker has physical access to the
device. Attack Complexity (AC): High (H) - Requires specific side-channel analysis
techniques.
Privileges Required (PR): None (N) - No specific privileges are needed beyond
physical access.
User Interaction (UI): None (N) - The Trojan activates autonomously.
Scope (S): Unchanged (U) - The Trojan doesn’t affect other system parts.
Confidentiality Impact (C): High (H) – Potential data and key leakage.
Integrity Impact (I): None (N) - No data modification.
Availability Impact (A): None (N) - No denial of service.
This yields a CVSSv3 base score of approximately 7.5 (High). This reflects the
high confidentiality impact, but the high attack complexity slightly reduces the
score.

5. Trojan Detection and Stealth Evaluation

The top-level module top instantiates three main modules:
aes_128: This module performs the core AES-128 encryption process. It takes a
128-bit state (plaintext) and a 128-bit key as input and produces a 128-bit cipher-
text as output. The encryption involves multiple rounds, each consisting of several
sub-operations (SubBytes, ShiftRows, MixColumns, AddRoundKey).
Trojan_Trigger: This module acts as a trigger for a hardware Trojan. It’s a
counter that generates a trigger signal (‘Tj_Trig’) based on a specific internal
counter value. The trigger condition is not explicitly defined in the provided code
but is implicitly controlled by the internal state of the counter.
TSC(Trojan State Controller): This module is the Trojan itself.It takes the
trigger signal (‘Tj_Trig’), the AES key, and the AES state (plaintext) as input.
When the ‘Tj_Trig’ signal is asserted, it loads a potentially modified version of the
state into the ‘Capacitance‘ output, which is not part of the original AES function-
ality and could be used to leak information or manipulate the output.

6. NETLAM output for Circuit Description:

After a comprehensive understanding of the functionalities of the different
modules in the design, the LLM tool creates a DAG in the form of an adjacency
list, which aids in determining the interconnections and intermediate registers
and signals of the design. A snippet of the query output by the LLM is provided in
the listing 7. NETLAM output for DAG Creation. Then the LLM identifies
the most vulnerable nets or modules in the design using the DAG. An instance
of the query output is illustrated in the listing 8. Identifying Vulnerable
Points.

NETLAM 15

Creating a complete DAG for such a large circuit would be extremely cumbersome
to represent as a simple adjacency list. However, I can illustrate the DAG concept
with a simplified example focusing on a small section and showing the general ap-
proach.
Let’s consider a part of the ‘S’ module:
module S(...);
input [7:0] in;
wire _081_ = ∼ in[7];
wire _092_ = ∼ in[6];
INV_X1 _492_ (.A(in[7]), .ZN(_081_));
INV_X1 _493_ (.A(in[6]), .ZN(_092_));
endmodule

The DAG for this snippet would be like this (adjacency list representation):
in[7]: _081_
in[6]: _092_
081:
092:

7. NETLAM output for DAG Creation

Given the structure, vulnerable points in the TjFree netlist are likely within the
aes_128 module’s internal registers and the data paths leading to the out ports.
The Trojan could be stealthy if it manipulates signals only when specific condi-
tions are met by the trigger.
Vulnerable Point 1: Registers within the aes_128 module (Specifically the DFFs
storing intermediate results of the AES rounds). A Trojan could subtly alter data
stored in these registers under specific conditions, without affecting the overall
functionality during normal operation.
Vulnerable Point 2: The data paths between combinational logic blocks in
aes_128 (between SubBytes, ShiftRows, MixColumns, AddRoundKey operations).
Trojans could insert small, conditional changes within these data paths, especially
around the AddRoundKey operation that combines round keys and state.
Vulnerable Point 3: The output registers of the aes_128 module (DFFs feed-
ing the out port). A Trojan could flip bits conditionally before the final output is
latched.

8. Identifying Vulnerable Points

After pinpointing the vulnerable points in the design, the LLM is asked to
propose the top 5 Trojans specific to those vulnerable sites. The top 10 Tro-
jans suggested by the LLM across various AES-based Trojan attack variants
are listed in Table 3. These Trojans have significantly high CVSS scores, and
notably, 5 of them have not been identified earlier and are not part of the Trust-
Hub benchmark dataset. We perform the two-stage equivalence checking of these
5 newly suggested Trojans, which are not included in Trust-Hub, to justify the
credibility of our proposed tool. Surprisingly, all of the suggested Trojans pass

16 T. S. Sarkar et al.

Table 3. Stealthy Trojans suggested by NETLAM and their corresponding target
modules, trigger mechanism, payload action, stealth features and CVSS Scores. The
proposed Trojans are applicable across various AES-based Trojan attack variants.

Rank Trojan Description Vulnerable Point Trigger Mechanism Payload Action Stealth Features Included in
Trust-Hub

1 Data-Dependent
Bit-Flip ‘aes_128‘ registers Specific input patterns,

clock cycle
Flip a bit in a

selected register
Random activation,

low probability Yes

2 Conditional Key
Modification

‘expand_key_128‘
XOR gates Specific input patterns Modify a few bits

in a round key Intermittent triggering Yes

3 Intermittent Signal
Tampering Data path in ‘aes_128‘ Trigger count,

specific data
Add small bias to an
intermediate value Rare activation No

4 Clock Gating
Trojan Clock signal in ‘aes_128‘ Counter value,

external signal
Temporarily halt clock

signal to block Random activation No

5 Data Tampering
Trojan ‘xS‘ module Complex trigger

Modifies specific bits of the
intermediate state in each

encryption round

Data-dependent,
complex trigger No

6 Data Dependent
Trojan Module final_round Conditional trigger Affects the final output directly Data-dependent,

complex trigger Yes

7 Logic-level
Trojan ‘table_lookup‘ module Always active Modifies lookup table values Small,

localized modification No

8 Gate-level
Trojan ‘S‘ module gates Specific input

combinations Bit-flipping Random activation,
low frequency No

9 Clock Glitch
Trojan Clock input to ‘S‘ Random clock

glitches Data corruption Very low frequency Yes

10 Delay-based
Trojan

‘aes_128‘ module
critical path Always active Introduces intentional delay

Change in delay
not visible

during functional tests
Yes

the EQY functional equivalence check. However, 4 of them fail the NETLAM
equivalence checker, thus strengthening our claim of evaluating such surrepti-
tious Trojans. The Trojans fail in the equivalence test mainly because it incurs
additional circuitry in the victim modules. A brief analysis is provided in Ta-
ble 4. As the LLM-based equivalence checker performs a one-to-one matching
between the circuitry as well as the hierarchy of the designs, it is easier to detect
stealthy Trojans using such tools.

Table 4. Comprehensive Results of Equivalence Checking for NETLAM suggested
Trojans

Rank Trojan
Description

CVSS
Score

Equivalence
Check (EQY)

Equivalence
Check (NETLAM)

1 Intermittent Signal
Tampering 9 Passed

Failed due to
presence of
additional circuitry

2 Clock Gating
Trojan 8.8 Passed

Failed due to presence
of the additional
clock-gating circuitry

3 Data Tampering
Trojan 8.5 Passed

Failed due to
difference in the
‘xS‘ module’s logic

4 Logic-level
Trojan 8 Passed Passed

5 Gate-level
Trojan 7.8 Passed

Failed due to
additional circuitry
in ‘xS‘ module

NETLAM 17

Nevertheless, seldom in formal equivalence and verification tools, the user
does not have access to the golden reference design [6]. In such cases, it is hard for
the verification tool to detect the discrepancies in the Trojan-infected designs.
Thus, a more reliable metric in such cases is the CVSS score. Moreover, this
work is a preliminary exploration of the capabilities of LLM tools in detecting
hardware Trojans in digital designs. We aspire to enhance the capacity of our
tool further and uncover more stealthy Trojans capable of even passing the
golden-input inclusive equivalence check to broaden the scope of benchmarks
like Trust-Hub further. The ultimate instruction given to the LLM is to devise a
Trojan specific to the vulnerable sites that is more stealthy than the one initially
provided. This is illustrated in the listing 9. Trojan Inserted Benchmark.

A more stealthy Trojan could be integrated within the existing AES-128 module,
specifically within the ‘expand_key_128’ module. This module has many unused
intermediate wires and registers, which present perfect camouflage.
This example adds a simple XOR operation to modify a single bit in the key ex-
pansion. Note: Actual implementation would involve a more sophisticated method.
module expand_key_128(clk, in, out_1, out_2, rcon);
// ... existing code ...
// Trojan: XOR with a bit of the input data, conditionally
always @(posedge clk) begin
if (Counter[0] & Counter[1]) begin // Conditional activation, even more
subtle
k0a[0] <= k0a[0] ^ in[0]; //Modifying the first bit of k0a
end
// ... existing code ...
endmodule

module Trojan_Trigger(clk, rst, out, Tj_Trig);
//The counter can now use outputs of the key expansion instead of the state
// ... modified counter logic ...
always @(posedge clk) begin
if (rst) begin
Counter <= 0;
end else begin
Counter <= Counter + 1;
end
end
assign Tj_Trig = Counter[0] & Counter[1]; // A simple, but subtle trigger
endmodule

9. Trojan Inserted Benchmark

18 T. S. Sarkar et al.

5 Conclusion

In this work, we present NETLAM, a comprehensive framework leveraging
multiple LLM-based tools to tackle the challenge of identifying and generating
hardware Trojans in digital designs. By combining an LLM-based equivalence
checker, a DAG generator with vulnerability identification capabilities, and a
Trojan injector, NETLAM provides a systematic approach to uncovering new,
previously undiscovered Trojans. Our evaluation of Trust-Hub’s AES dataset
demonstrates the framework’s ability to generate novel Trojans with high CVSS
scores. We demonstrate that LLM models, such as GPT-4o and Gemini, can
improve Trojan detection by leveraging semantic and probabilistic analysis in-
stead of relying solely on strict logical equivalence. The functional, logical, and
structural equivalence test is critical in the domain of hardware Trojan detec-
tion, thus necessitating the need for more open-source and accessible tools for
performing such routine tests. Our proposed tool NETLAM paves the way for
such design-critical validation by using a hybrid model for inspecting digital de-
signs that include a formal verification tool for deterministic logic checks and a
Generative AI for anomaly detection, trigger analysis, and structural mapping.
Importantly, NETLAM not only identifies vulnerabilities but also contributes
to enhancing Trojan research by uncovering more potential Trojans, thus paving
the way for expanding benchmarks like Trust-Hub.

Acknowledgments. This work is supported by the Information Security Education
and Awareness (ISEA) project under the Ministry of Electronics and Information Tech-
nology (MeitY).

References

1. Jitendra Bhandari, Rajat Sadhukhan, Prashanth Krishnamurthy, Farshad Khor-
rami, and Ramesh Karri. SENTAUR: security enhanced trojan assessment using
llms against undesirable revisions. CoRR, abs/2407.12352, 2024.

2. Aritra Bhattacharyay, Shuo Yang, Jonathan Cruz, Prabuddha Chakraborty,
Swarup Bhunia, and Tamzidul Hoque. An automated framework for board-level
trojan benchmarking. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 42(2):397–410, 2023.

3. Jayeeta Chaudhuri, Dhruv Thapar, Arjun Chaudhuri, Farshad Firouzi, and Krish-
nendu Chakrabarty. SPICED: syntactical bug and trojan pattern identification in
A/MS circuits using llm-enhanced detection. CoRR, abs/2408.16018, 2024.

4. Jonathan Cruz, Pravin Gaikwad, Abhishek Nair, Prabuddha Chakraborty, and
Swarup Bhunia. Automatic hardware trojan insertion using machine learning.
CoRR, abs/2204.08580, 2022.

5. Anna Lena Duque Antón, Johannes Müller, Lucas Deutschmann, Mohammad Rah-
mani Fadiheh, Dominik Stoffel, and Wolfgang Kunz. A golden-free formal method
for trojan detection in non-interfering accelerators. In 2024 Design, Automation
& Test in Europe Conference & Exhibition (DATE), pages 1–6, 2024.

6. Anna Lena Duque Antón, Johannes Müller, Lucas Deutschmann, Mohammad Rah-
mani Fadiheh, Dominik Stoffel, and Wolfgang Kunz. A golden-free formal method

NETLAM 19

for trojan detection in non-interfering accelerators. In 2024 Design, Automation
& Test in Europe Conference & Exhibition (DATE), pages 1–6, 2024.

7. Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory (lstm). Neural
Computation, 9(8):1735–1780, 1997.

8. The freePDK45 process design kit (PDK).
9. Lucas Klemmer, Dominik Bonora, and Daniel Grosse. Large-scale gatelevel opti-

mization leveraging property checking. In DVCon Europe 2023; Design and Veri-
fication Conference and Exhibition Europe, pages 86–93, 2023.

10. Georgios Kokolakis, Athanasios Moschos, and Angelos D. Keromytis. Harnessing
the power of general-purpose llms in hardware trojan design. In Martin Andreoni,
editor, Applied Cryptography and Network Security Workshops, pages 176–194,
Cham, 2024. Springer Nature Switzerland.

11. David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Recurrent
neural network (rnn). Nature, 323:533–536, 1986.

12. Dipayan Saha, Katayoon Yahyaei, Sujan Kumar Saha, Mark Tehranipoor, and
Farimah Farahmandi. Empowering hardware security with llm: The development
of a vulnerable hardware database. In 2024 IEEE International Symposium on
Hardware Oriented Security and Trust (HOST), pages 233–243, 2024.

13. Hassan Salmani, Mohammad Tehranipoor, and Ramesh Karri. On design vulnera-
bility analysis and trust benchmarks development. In 2013 IEEE 31st International
Conference on Computer Design (ICCD), pages 471–474, 2013.

14. Bicky Shakya, Miao Tony He, Hassan Salmani, Domenic Forte, Swarup Bhunia, and
Mark Mohammad Tehranipoor. Benchmarking of hardware trojans and maliciously
affected circuits. Journal of Hardware and Systems Security, 1:85 – 102, 2017.

15. Sergei Skorobogatov and Christopher Woods. Breakthrough silicon scanning dis-
covers backdoor in military chip. In Emmanuel Prouff and Patrick Schaumont,
editors, Cryptographic Hardware and Embedded Systems – CHES 2012, pages 23–
40, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

16. Mohammad Tehranipoor and Farinaz Koushanfar. A survey of hardware trojan
taxonomy and detection. IEEE Design & Test of Computers, 27(1):10–25, 2010.

17. Clifford Wolf, Johann Glaser, and Johannes Kepler. Yosys-a free verilog synthesis
suite. 2013.

18. Shuo Yang, Tamzidul Hoque, Prabuddha Chakraborty, and Swarup Bhunia.
Golden-free hardware trojan detection using self-referencing. IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, 30(3):325–338, 2022.

19. Rozhin Yasaei, Luke Chen, Shih-Yuan Yu, and Mohammad Abdullah Al Faruque.
Hardware trojan detection using graph neural networks. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, pages 1–1, 2022.

	NETLAM: An Automated LLM Framework to Generate and Evaluate Stealthy Hardware Trojans

