
“OOPS!”: Out-Of-Band Remote Power
Side-Channel Attacks on Intel SGX and TDX

Nimish Mishra
Indian Institute of Technology Kharagpur

nimish.mishra@kgpian.iitkgp.ac.in

Kislay Arya
Indian Institute of Technology Kharagpur

kislayarya536@kgpian.iitkgp.ac.in

Sarani Bhattacharya
Indian Institute of Technology Kharagpur

sarani@cse.iitkgp.ac.in

Paritosh Saxena
Intel Corporation, USA

paritosh.saxena@intel.com

Debdeep Mukhopadhyay
Indian Institute of Technology Kharagpur

debdeep@cse.iitkgp.ac.in

Abstract—Prior work shows that remote power attacks
on Intel processors are possible through two Model Spe-
cific Registers (MSRs): MSR_PKG_Energy_Status and
MSR_PP0_Energy_Status. In response, Intel introduced a
defense: a bit in MSR IA32_MISC_PACKAGE_CTLS allows users
to enable/disable “filtering” mechanism that adds additional noise
to energy measurements to harden against power side-channel
attacks.

In this work, we demonstrate that “filtering” does not cover
all possible avenues of measuring power. On Intel server-grade
platforms, components like out-of-band management interface
(OOB) exist which also expose telemetric information like in-
band energy consumption. For this, we first reverse engineer the
protocol structure over which OOB communicates with in-band
components. We then show how OOB allows read-only access
to the Package Configuration Space (PCS) and note that energy
readings through PCS are outside the scope of filtering.

Using this, we establish remote power side-channels on Intel
SGX and TDX operational on Intel Sapphire Rapids. We first
construct a synchronization mechanism to align in-band execu-
tion with out-of-band measurements by leveraging deliberately
disabled MSRs. We then use energy readings through OOB PCS
to recover 2048-bit RSA keys from MbedTLS operational within
in-band Intel SGX (with generic single-stepping assumption).
Finally, we also leak AESNI keys from within in-band Intel TDX
(without any single-step assumption).

Prior to our work, the literature on side-channels has been
focused on attacks leveraging in-band interfaces. Our work
establishes the importance of evaluating confidential computing
architectures against attack vectors that combine abilities of
both in-band and out-of-band interfaces to achieve adversarial
objectives (that both in-band and out-of-band interfaces cannot
independently achieve).

Index Terms—Power Side-Channel, Intel SGX, Intel TDX

I. INTRODUCTION

Processor vendors like Intel ship Model Specific
Registers (MSRs) which relay telemetric information
(like energy consumption) to software for monitoring
platform health. For instance, Running Average Power
Limit (RAPL) MSRs MSR_PKG_Energy_Status and
MSR_PP0_Energy_Status allow software to readout
energy consumption by Package and Power Plane 0 domain
respectively. Prior work [1] demonstrates how these MSRs
can be used to successfully mount remote power side-channels

on Intel platforms. The attack exploits the fact that, when
executing workloads like AESNI, CMOS circuitry exhibits a
power consumption pattern dependent on secret data, even
across boundaries of Trusted Execution Environment (TEE)
like Intel SGX. This implies these MSRs capture power
consumption from cores that execute Intel SGX threads, and
expose this consumption information to non-SGX processes.
Likewise, subsequent works [2], [3] exploit the correlations
between energy consumption and dynamic scaling of
processor frequency to mount similar exploits as [1].

In response, Intel released a mitigation: filtering of RAPL
MSRs [4]. The RAPL filtering mechanism scales noise in the
RAPL measurements as the power consumption of the package
increases, to harden against power side-channel attacks in [1]–
[3]. This defense is exposed to software through the MSR
IA32_MISC_PACKAGE_CTLS, which software can use to
enable/disable filtering. Once enabled, filtering can no longer
be disabled until the next reboot. It is general consensus that
remote power attacks on patched Intel processors are infeasi-
ble. As such, in this work, we ask the following question:

With filtering enabled on RAPL MSRs, do there exist other
interfaces which still report unfiltered energy consumption
status to software?

In this work, we show that even when RAPL filtering is
enabled, there exist interfaces which report unfiltered energy
consumption, which an adversary can exploit remotely to
compromise Intel SGX and TDX1. Concretely, on Intel server-
grade processors (like Intel Xeon server products), there
exists an out-of-band management interface (named Baseboard
Management Controller or BMC) which can access the in-
band processor Package Configuration Space (or PCS). The
PCS comprises several telemetric readouts, including (but not
limited to) package energy consumption. We show this PCS
energy consumption readout is unfiltered, essentially allowing
us to mount remote power side-channels on Intel Xeon proces-
sors, even when filtering is enabled. To summarize, we make
the following contributions:

1Intel Trust Domain Extensions (TDX): the successor to Intel SGX for their
Trusted Execution Environment solutions.

1) We first uncover the communication protocol structure
between in-band processor package and out-of-band
BMC, which is used by the BMC to access in-band
processor components. We then detail two access com-
mands allowing readout of in-band telemetric informa-
tion: RdIAMSR, and RdPkgConfig. We then state our
main observation that RdPkgConfig allows BMC ac-
cess to unfiltered in-band package energy consumption.

2) There does not exist any documented mechanism of
communicating from in-band processor to out-of-band
BMC. This complicates aligning in-band workload ex-
ecution with out-of-band telemetric measurements. To
circumvent this, we construct a novel unidirectional
communication channel to allow in-band software to
signal the BMC when to start/stop collecting telemetric
measurements.

3) Using the unfiltered package energy consumption re-
ported by RdPkgConfig, we mount key recovery
attacks on MbedTLS RSA executing within Intel SGX.
This attack assumes the presence of a mechanism to
perform single-step and zero-step.

4) Likewise, we also use RdPkgConfig to perform key
recovery attacks against AESNI executing within Intel
TDX without any single-step/zero-step requirement. For
this, we first establish that energy consumption readouts
from RdPkgConfig are outside the scope of TDX
virtualization, implying RdPkgConfig energy con-
sumption readouts leak the execution context of TDX.
We then detail how to mount Correlation Power Attack
(CPA) styled key recovery against AESNI executing
within Intel TDX.

Responsible Disclosure: We responsibly disclosed our find-
ings to Intel in June 2024. Intel completed their analysis
by November 6, 2024. Intel has clarified side-channel attack
using. OOB power telemetry as out of scope for SGX and
TDX in this generation of products. Side channels based on
in-band power telemetry are in scope for SGX and TDX.

II. UNCOVERING OUT-OF-BAND AND IN-BAND
COMMUNICATIONS

We first discuss details of how the out-of-band management
interface is configured on our test setup, and how it commu-
nicates with in-band system management interface. We then
discuss different kinds of in-band measurements possible to be
readout from out-of-band, and conclude with key takeaways
that eventually allow us to mount remote power side-channel
attacks in-band even in the presence of filtering.

A. Threat Model and Experimental Setup

Throughout this work, all analysis and results are reported
on Intel(R) Xeon(R) Platinum 8481C (i.e. Intel Xeon Gener-
ation 4) processor (codenamed: Xeon Sapphire Rapids) with
microcode version 0x2b0004d0. The Baseboard Manage-
ment Controller on our system runs the OpenBMC Linux
Distribution [5], which is a stripped down version of Linux
for management controllers. It uses Yocto, OpenEmbedded,

systemd, and D-Bus. In addition to this, the BMC also has
three Field Replaceable Units (or FRUs): a single builtin FRU
device, one external SOLUM IS162F22 FRU, and one external
Intel FFPANEL FRU.

On the BMC side, we assume presence of vanilla software
as shipped by the OpenBMC Linux Distribution (i.e. without
any adversarial modifications). The adversary can only readout
in-band telemetric measurements which the platform manage-
ment protocols of Intel Xeon natively allow. On the in-band
side, we assume all victim code to execute within a Trusted
Execution Environment (either Intel SGX or Intel TDX). This
implicitly assumes that all non-SGX (alternatively non-TDX)
software is inherently untrusted.

As the later sections also detail, our “adversary” is a combi-
nation of the 1⃝ BMC and 2⃝ the in-band non-SGX/non-TDX
software. Note that both the BMC as well as the in-band non-
SGX/non-TDX software are outside the Trusted Computing
Base (TCB) of Intel SGX/TDX. This makes a combination of
the two to be also outside the Trusted Computing Base (TCB)
of Intel SGX/TDX.

B. Platform Management Protocols
Intel Xeon systems are a combination of several heteroge-

neous components glued cohesively together. As such, there
exist several system management protocols servicing each of
these components. We summarize a few below:

• In-Band Management: This refers to managing the
components within the silicon (i.e. the die) which com-
municate through a four-lane ring interconnect [6]. Man-
agement of the in-band resources can be done through
Control and Status Registers (CSRs) or through Model
Specific Registers (MSRs).

• Message Control Transport Protocol (MCTP): The
MCTP protocol is used over the system management bus
(SMBus) for management of peripherals (like Intel FPGA
Programmable Acceleration Card) over Inter-Integrated
Circuit (I2C) or Peripheral Component Interconnect Ex-
press (PCIe).

• Intelligent Platform Management Interface (IPMI):
This protocol allows the BMC to poll platform sensors for
availability, to efficiently readout sensor data, and make
such data available to higher level management systems.
IPMI predominantly helps in ensuring platform health
by consistently reporting on data-points including (but
not limited to) core voltage, core temperature, fan speed,
Dual-In-Line Memory Module (DIMM) temperatures,
and so on.

• Platform Environment Control Interface (PECI): PECI
is an Intel proprietary interface allowing out-of-band
management of in-band processors. PECI is predomi-
nantly used for power management and real-time con-
figuration of in-band processor features.

Out of these protocols, IPMI and PECI report telemetric
information, and are thus of direct interest to us2. IPMI

2As a side-note, SMBus has been exploited in [7] for BMC based fault
attacks. Fault attacks are outside the scope of our analysis though.

reports telemetric information like CPU energy consumption,
CPU average power, DIMM average power, each logical
CPU’s temperature, fan speeds, and a lot more. Likewise,
PECI allows access to in-band measurement interfaces like
Model Specific Registers (MSRs) and Package Configuration
Space (PCS) which also allow readouts of similar telemetric
information. However, PECI offers much more granular
measurements than IPMI. To summarize:

Takeaway: Telemetric Measurements from PECI vs
IPMI. IPMI offers coarse-granular measurements (i.e. in
units of Watts and degree Celsius) which are unsuitable for
the adversarial objectives considered in this work. On the
other hand, PECI allows readouts from MSRs and PCS,
which report more fine-grained measurements (like micro-
joules for energy consumption) and are suitable for our
adversarial objectives.

We thus restrict our discussion to PECI henceforth. IPMI
still may be of interest for other adversarial objectives like
neural network model fingerprinting as considered in [8] and
we leave its investigation to future work.

C. Reversing PECI protocol structure

PECI is an Intel proprietary technology, and as such, not
much is documented about it. However, Intel actively con-
tributes to maintaining the PECI ioctl [9] in the OpenBMC
Linux Distribution [5], and it provides a handle to reverse
engineer PECI protocol structure.

Each PECI command has a fixed base address of 0x30
against which requests are made by the BMC over PECI. A set
of completion codes signal what kind of response was received
for the PECI request. For instance PECI_DEV_CC_SUCCESS
(i.e. 0x40) signals a successful response to a PECI
request. Likewise, PECI_DEV_CC_UNAVAIL_RESOURCE
(i.e. 0x82) signals the requested resource was unavailable. In
addition to this, out of the commands supported by PECI on
Intel Xeon, only GetTemp and RdIAMSR have documented
counterparts in-band. We also note that although WrIAMSR
is an available command in [9], it is (by default) disabled on
the Intel Xeon platform experimented upon in this work. For
our adversarial objectives, we are only interested in RdIAMSR
and RdPkgConfig since they allow readouts of telemetric
information like processor package power consumption.

1) RdIAMSR: We first detail RdIAMSR since it offers di-
rect access to in-band MSRs, and hence aligns with our adver-
sarial goals. We summarize the protocol structure of struct
peci_rd_ia_msr_msg on our platform in Fig. 1. For
the RdIAMSR Request packet, the write length, read length,
and the command are always fixed at 0x05, 0x09, and
0xB1 respectively. Hyperthread ID allows defining the logical
processor whose MSR to read, and MSR address defines the
address of the MSR to read. The Response packet comprises
the completion code and (if successful) the value of MSR
which was read. We now perform two experiments to further
investigate RdIAMSR’s mapping with in-band MSRs.

In the first experiment, we fix a generic AESNI code 3 on
a CPU core x in-band, and measure IA32_FIXED_CTR04

on CPU core x through msr-tools5 from another
CPU core y. Our experimental setup internally uses
smp_call_function_single6, which runs the majority
of measurement code on CPU core y, but schedules a low-
latency function on CPU core x leveraging the operating
system scheduler. In our case, this low-latency function is a
simple rdmsr on IA32_FIXED_CTR0. This setup allows
CPU core y to read MSRs of CPU core x without adding
too much noise to MSRs of CPU core x. Once we have in-
band measurements of IA32_FIXED_CTR0 on CPU core
x, we now leverage RdIAMSR by fixing the hyperthread
ID (see Fig. 1) to x and MSR address as the address of
IA32_FIXED_CTR0. We then re-run AESNI in-band on
CPU core x and collect measurements through RdIAMSR. We
have the following observation:
Takeaway: Hyperthread mapping in-band and out-
of-band is identical. MSR measurements in-band on
CPU core x are highly correlated (average correlation
0.84 across 100 experimental runs) with measurements
through RdIAMSR with Hyperthread ID set to x. This
suggests that the logical-core-to-hyperthread-ID mapping
out-of-band is exactly same as that in-band, saving the
adversary additional effort of first reverse engineering this
mapping.

Our second experiment is identical to the
first, except that we now measure the RAPL
MSR MSR_PKG_ENERGY_STATUS in place of
IA32_FIXED_CTR0. We first disable RAPL filtering
through IA32_MISC_PACKAGE_CTLS7 and collect RAPL
MSR measurements both in-band and out-of-band. Then,
we re-enable RAPL filtering by setting the relevant bit of
IA32_MISC_PACKAGE_CTLS and redo measurements both
in-band and out-of-band. We have the following observation:

Takeaway: Both in-band and out-of-band RAPL MSR
measurements are filtered. RAPL MSR measurements
in-band on CPU core x are highly correlated (average
correlation 0.74 over 100 experimental runs) with
measurements through RdIAMSR with Hyperthread ID set
to x for both cases (when filtering was enabled and when
it was disabled).

Our experiments lead to the conclusion that enabling
filtering in-band also enables filtering on RdIAMSR mea-
surements. Moreover, the second MSR reported in [1] (i.e.
MSR_PP0_Energy_Status) is disabled on Intel Xeon plat-
form. This makes out-of-band measurements of RAPL MSRs

3https://github.com/intel/cryptography-primitives
4Fixed performance counter: counts number of x86 retired instructions.
5https://github.com/intel/msr-tools
6https://github.com/torvalds/linux/blob/master/kernel/smp.c
7And also by additionally disabling Intel SGX and Intel TDX through

platform BIOS.

Fig. 1. Uncovered protocol structure of RdIAMSR on Intel Xeon (Saphhire
Rapids). Each individual box is 8-bits wide.

through RdIAMSR unsuitable for our adversarial goals. We
thus shift focus on RdPkgConfig.

2) RdPkgConfig: We now detail RdPkgConfig as
it also allows access to telemetric information, and aligns
with our adversarial objectives. We summarize the protocol
structure of struct peci_rd_pkg_cfg_msg in Fig. 2.
Compared to the protocol structure of RdIAMSR, there are two
differences: 1⃝ the command is 0xA1, and 2⃝ RdPkgConfig
takes an 8-bit index and 16-bit parameter which sig-
nifies the aspect of the Package Configuration Space (PCS)
to be read. A list of index can be found in the defi-
nition of struct peci_rd_pkg_cfg_msg in [9]. The
parameter, on the other hand, is undocumented and needs
to be fuzzed across all 16-bit possibilities. The Response
packet has a completion code and a 64-bit value of the PCS
parameter if the request was successful.

We now design the following experiment. First, on the in-
band side, we execute a generic AESNI code 8 on a fixed CPU
core. We also attach high-priority threads to other CPU cores
on the package with negligible workload intensity to reduce
noise in captured energy consumption. Then, on the out-of-
band side, we first fix the index of our RdPkgConfig
request packet to PECI_MBX_INDEX_ENERGY_COUNTER9

(i.e. the “Energy counter”) and fuzz through all possibilities
of the 16-bit parameter. We summarize our observation:

Takeaway: RdPkgConfig with index = 3 and
parameter = 0xff readout PCS energy consump-
tion at intervals of 1 millisecond. Moreover, any
parameter value other than 0xff readouts a 0, im-
plying 0xff is the only parameter for index = 3
which readouts valid energy consumption data. Finally,
we observe a poor correlation (average correlation 0.04
over 100 runs) between data collected from RdIAMSR
and data from RdPkgConfig, with standard deviation of
data from RdPkgConfig being lesser (i.e. less noise).

8https://github.com/intel/cryptography-primitives
9There are other index which also report RAPL domain data, like

PECI_MBX_INDEX_PKG_RAPL_PERF but we did not observe any ex-
ploitable leakage with it. It is an interesting future work direction to try out
other index wrt. the adversarial objectives we explore here.

Fig. 2. Uncovered protocol structure of RdPkgConfig on Intel Xeon
(Saphhire Rapids). Each individual box is 8-bits wide.

Recall that the RAPL filtering algorithm [4] explicitly
adds more noise, increasing the standard deviation of RAPL
MSR data. In our experiments, we observe a poor correlation
of RdPkgConfig with the data from RdIAMSR10 (with
filtering enabled), as well as the fact that the distribution
of RdPkgConfig is much thinner wrt. standard deviation
(refer Fig. 3). For completeness, we also correlate readouts
from RdPkgConfig with the unfiltered RdIAMSR readings;
in this experiment, we observe a strong correlation: 0.712.
We thus conclude that energy readings from RdPkgConfig
(index=3 and parameter=0xff) are not filtered. In the
next section, we use this fact to craft remote power side-
channels.

III. USING RDPKGCONFIG TO CRAFT REMOTE POWER
SIDE-CHANNEL ATTACKS ON INTEL SGX AND TDX

In this section, we explain how the RdPkgConfig
(index=3 and parameter=0xff) measurements can be
utilized to mount remote power side-channel attacks on Intel
Xeon Generation 4 processors in presence of Trusted Execu-
tion Environments like Intel SGX and TDX. We first reason
why energy consumption is visible across Intel SGX/TDX
trust boundaries. We then state (and fix) a roadblock to
mounting successful attacks: synchronizing victim execution
in-band and adversarial measurements out-of-band by using
intentionally disabled MSR IA32_PMC0. Finally, we state our
attack results.

A. Investigating Visibility of Energy Consumption outside Intel
SGX/TDX Trust Boundaries

One precondition of a successful remote power attack is
the fact that energy consumption of Intel SGX/TDX is visible
across their Trusted Computing Base (TCB) boundary to a
non-SGX/non-TDX process. We investigate this further here.

1) Intel SGX: The work in [1] already demonstrates that
energy consumption is visible across Intel SGX boundaries.
We attribute the success of [1] to the fact that RAPL MSRs
are Package scoped (i.e. a single MSR services all cores in
the Package), while Intel SGX context is applicable only on
the logical core where it is executing. Contrastingly to this

10We read MSR_PKG_Energy_Status from the out-of-band interface.

observation, MSR IA32_SPEC_CTRL11 is a Core scoped
MSR. Thus, when Intel SGX context is applicable on a
CPU core, this MSR can be made to behave differently (like
disallowing any disables on the mitigations) than it would
under non-SGX context [10]. However, a similar restriction
cannot be made for a Package scoped MSR (like RAPL MSRs)
since they are associated with multiple CPU cores (and thus
multiple execution contexts). It is possibly for this reason why
Intel (in response to [1]) opted for a filtering countermeasure
rather than disabling RAPL MSR when Intel SGX context
is operational. We note that RdPkgConfig (index=3 and
parameter=0xff) is also a Package scoped measurement
(since it is readout from the Package Configuration Space),
and is thus outside the scope of Intel SGX trust boundaries
following a similar reasoning.

2) Intel TDX: Intel TDX follows a slightly different ap-
proach to defining its trust boundaries than Intel SGX. Con-
cretely, Intel TDX performs MSR virtualization [11] which
virtualizes a given set of MSRs when TDX is operational. Intel
TDX also supports context-switching the virtualized MSRs as
well. This approach allows TDX to access its own virtualized
MSRs as well as save MSR context across context-swiches
without reflecting the increments in TDX’s MSRs on the
MSRs of the non-TDX processes. A concrete example of
such virtualized MSRs are Performance Monitoring Counters
(PMCs) [11]. However, we note the following:

Takeaway: RAPL MSRs are not virtualized by Intel
TDX. Intel TDX chooses not to explicitly virtualize RAPL
MSRs [11], and willingly accepts reflecting energy con-
sumption of Intel TDX execution context to the Package
scoped RAPL MSRs. We hypothesize that such a design
choice was made since RAPL MSRs are anyway protected
by RAPL filtering. However, with the introduction of
our side-channel through RdPkgConfig, the design
choice of not virtualizing energy consumption allows
us to craft remote power-channels on Intel TDX.

B. Aligning in-band execution and out-of-band measurements

The experiments detailed in the previous section aimed at
uncovering properties of RdPkgConfig, and thus we re-
sorted to manual synchronization. However, for actual exploits
this violates the threat model we cannot assume any control
over victim code within Intel SGX/TDX. We thus construct
an unidirectional communication channel from in-band non-
SGX/non-TDX context to out-of-band RdPkgConfig that
helps synchronize the two. To do so, we leverage the fact that
non-SGX/non-TDX MSRs related to performance monitoring
unit accept general purpose programming. We can thus disable
these MSRs (i.e. make their values architecturally invalid), and
then use them for communicating between in-band and out-
of-band. The detailed experimental setup is enumerated below.
We have three entities: Intel SGX/TDX execution context
(abbr. V), in-band non-SGX/non-TDX execution context (abbr.

11Controls enabling/disabling mitigations against speculative attacks.

A1), and out-of-band RdPkgConfig measurement context
(abbr. A2). V is the victim, and the combined adversary is
(A1, A2).

1) A1 first disables MSR IA32_PMC0 by programming
its control MSR IA32_PERFEVTSEL0. A1 ensures
IA32_PMC0 remains disabled throughout the duration
of the attack. Meanwhile, A2 continuously polls the LSB
of IA32_PMC0 through RdIAMSR.

2) A1 then sets the least-significant-bit (LSB) of
IA32_PMC0. This triggers A2 to initiate a
measurement from RdPkgConfig (index=3
and parameter=0xff). Call this measurement M1.

3) A1 then triggers execution of V by relinquishing a CPU
core to let V execute. A1 also attaches several high-
priority threads (with negligible workload intensity) on
other CPU cores in the package to reduce overall noise
in the reported energy consumption of the package.

4) Once V is done executing, A1 unsets the LSB of
IA32_PMC0. This triggers A2 to initiate another
measurement from RdPkgConfig (index=3 and
parameter=0xff). Call this measurement M2.

5) A2 reports a single sample point as (M2 −M1), which
captures the energy consumed throughout execution of
V. The entire process is reported for N sample points.

Note that V can be execution context of either Intel SGX
or Intel TDX. We now use this setup to mount remote power
side-channels on Intel SGX and TDX.

C. Leaking RSA keys across Intel SGX trust boundary

We now show how to use the power side-channel from
RdPkgConfig to mount side-channel attacks on the control
flow of RSA executions, eventually extracting the RSA private
keys from MbedTLS implementation within SGX. We now
summarize our attack principle: Depending upon the private
key bits, RSA implementations take varying control flow paths
which execute different sequence of instructions. Isolation of
specific instructions in these different control flow paths and an
eventual statistical comparison of their associated power side-
channel footprints leads to leaking secret dependent control
flow. Moreover, as was the case in [1], we make an additional
assumption: single/zero stepping (like [12] for instance) is
operational on Intel SGX.

We perform our attack on MbedTLS implementation (ver-
sion 3.5.1) running inside Intel SGX. We follow similar
attack semantics as [1]. MbedTLS supports the windowed
modular exponentiation implementation, where a left-to-right
sliding window of size d (dependent on the size of input
secret exponent) contributes to the computation of the final
result in each iteration. Briefly, an adversary needs to perform
three sequential steps: 1⃝ leak the number of leading zeros,
2⃝ determine the secret exponent dependent square/multiply
control flow sequence, and 3⃝ from the leaked control flow
sequence, recover the secret key.

It is sufficient to perform steps 1⃝ and 2⃝, and then rely
upon known key extraction algorithms [13] to recover the

secret key. If the bit of the secret exponent is 1, a square op-
eration occurs which relies upon Montgomery multiplication
(mpi_montmul). Among other operations, mpi_montmul
relies upon a memset to initialize and segregate memory. In
Intel SGX, this memset is replaced by Intel’s fast_memset
implementation, which in turn uses AVX instructions. In
summary, whenever the current bit of the secret exponent is 1,
an AVX memory instruction (like movdqa) is executed; other-
wise, a non-scalar x86 instruction (like movzx) is executed.
Using a similar observation as [1], the energy consumption
profile of movdqa and movzx is substantially different once
they are zero-stepped, easily allowing an adversary to recover
secret-dependent control flow, and hence the secret. In our
experiments with RSA-2048 (for which MbedTLS chooses the
default window size as 5), we invoke zero-steps and measure
10000 samples from RdPkgConfig at a sampling rate of 1
millisecond. Subsequently, we are able to leak the 97.4% of
the 2048 bit RSA key in about 5 hours12.

D. Leaking AESNI keys across Intel TDX trust boundaries

For AESNI, we follow a similar setup as for RSA but with
two main differences: 1⃝ we place the AESNI code within
Intel TDX, and 2⃝ we require no single/zero step assumption.

We follow a similar AESNI setup as [1] and [3]. Within Intel
TDX, we implement AESNI through Intel IPP library 13. As
a first experiment, to establish that different keys to AESNI
can be distinguished by our side channel, we perform two
similar experiments. In the first experiment, the AESNI key
is 0x0000000000000000, while in the second experiment,
the AESNI key is 0xffffffffffffffff. We show the
result in Fig. 3, where the energy consumption footprint of
the two experiments is clearly distinguishable.

Next we perform CPA on AESNI by choosing the hypo-
thetical power model as the Hamming Weight of Round-0 (in
order to recover the round 0 key, from which other keys can
be trivially leaked by simulating the AESNI key schedule).
We collect 10000 sample points in each trace, with 100000
invocations of ippsAESEncryptECB (16 bytes of plaintext
in each invocation) contributing to a single sample point. We
collected over a million traces for the overall CPA experiment.
Overall, we collect over 400 hours worth of data in our setup.
We were successfully able to recover 13 bytes out of the
unknown 16 bytes of victim AESNI key executing within
Intel TDX14, thereby demonstrating the applicability of using
RdPkgConfig to mount CPA attacks on AESNI executing
within Intel TDX.

IV. CONCLUSION

Following the public disclosure of remote power attacks
through RAPL MSRs, Intel followed up with a “filtering”
defense. We shared our findings regarding RdPkgConfig
side channel on SGX and TDX with Intel. Intel has clarified

12Remaining secret bits can be easily leaked through lattice reduction.
13https://github.com/intel/cryptography-primitives
14Entropy of remaining 3 bytes is insufficient to prevent direct extraction,

thereby allowing leakage of the entire 16 byte key.

200000 250000 300000 350000 400000
Energy in uJ (Measured from RdPkgConfig)

0

500

1000

1500

2000

2500

3000

3500

4000

De
ns

ity

AESNI key with all bits 0
AESNI key with all bits 1

Fig. 3. Distinguishing two AESNI keys through RdPkgConfig mea-
surements. T-test score of these experiments is 12.41, implying the two
distributions are clearly distinguishable.

0 100 200 300 400 500 600 700 800
of traces (10k)

20

40

60

80

100

Gu
es

sin
g

En
tro

py

Fig. 4. Guessing Entropy trend (for AESNI key) with increase in number of
collected traces.

to us that it was a conscious design decision made based on
upon conversations with its customers and their threat models.
Intel considers side-channel attack using OOB power telemetry
as out of scope in this generation of products. Our work
underlines the importance of a OOB power telemetry as a
potential source of side channel to confidential compute and
it should be comprehended as the threat model for SGX and
TDX evolves in the future.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
whose comments helped in improving the final version of the
manuscript. Nimish Mishra, Sarani Bhattacharya, and Debdeep
Mukhopadhyay would additionally like to acknowledge the
Centre on Hardware-Security Entrepreneurship Research and
Development (C-HERD), MeitY, Govt. of India, and Infor-
mation Security Education and Awareness (ISEA) initiative,
MeitY, Govt. of India, for partially funding this research.

REFERENCES

[1] M. Lipp et. al., “Platypus: Software-based power side-channel attacks
on x86,” in 2021 IEEE Symposium on Security and Privacy (SP). IEEE,
2021, pp. 355–371.

[2] Y. Wang et. al., “Hertzbleed: Turning power {Side-Channel} attacks
into remote timing attacks on x86,” in 31st USENIX Security Symposium
(USENIX Security 22), 2022, pp. 679–697.

[3] C. Liu et. al., “Frequency throttling side-channel attack,” in Proceedings
of the 2022 ACM SIGSAC Conference on Computer and Communica-
tions Security, 2022, pp. 1977–1991.

[4] Intel, “Rapl advisory intel-sa-00389,” 2022.
[5] OpenBMC, “Openbmc linux distribution,”

https://github.com/openbmc/openbmc/tree/master, 2024.
[6] R. Paccagnella et. al., “Lord of the ring (s): Side channel attacks on

the {CPU}{On-Chip} ring interconnect are practical,” in 30th USENIX
Security Symposium (USENIX Security 21), 2021, pp. 645–662.

[7] Z. Chen et. al., “Pmfault: Faulting and bricking server cpus through
management interfaces: Or: A modern example of halt and catch fire,”
IACR Transactions on Cryptographic Hardware and Embedded Systems,
pp. 1–23, 2023.

[8] N. Mishra et. al., “Too hot to handle: Novel thermal side-channel in
power attack-protected intel processors,” in 2024 IEEE International
Symposium on Hardware Oriented Security and Trust (HOST). IEEE,
2024, pp. 378–382.

[9] Intel, “Peci ioctl,” https://github.com/openbmc/linux/blob/dev-
5.4/include/uapi/linux/peci-ioctl.h, 2024.

[10] ——, “Speculative store bypass. intel-sa-00115,” 2018.
[11] ——, “Intel tdx specification documentation,” 2023.
[12] D. Skarlatos et. al., “Microscope: Enabling microarchitectural replay at-

tacks,” in Proceedings of the 46th International Symposium on Computer
Architecture, 2019, pp. 318–331.

[13] D. J. Bernstein et. al., “Sliding right into disaster: Left-to-right sliding
windows leak,” in Cryptographic Hardware and Embedded Systems–
CHES 2017: 19th International Conference, Taipei, Taiwan, September
25-28, 2017, Proceedings. Springer, 2017, pp. 555–576.

